A few sensor failure modes

prof. Domenico G. Sorrenti Dip. Informatica, Sistemistica e Comunicazione Università degli Studi di Milano - Bicocca Ashort review of failure modes of sensors used in ADAS and autonomous driving

Index

- Simplest idea: proprioperception.
- Position estimation based on propriopercetion is not enough.
- Global localization.
- Global localization is not enough.
- Sensors for observing the world outdside the robot (car), for localization and world modeling.

Proprioperception of motion

GNSS: GPS, Galileo, Glonass, Beidu

GNSS: GPS, Galileo, Glonass, Beidu

Necessari sensori a bordo robot

- In ADAS and in autonomous driving the robotcar builds a model of the world.
- This means the car perceives the world around it by means of its sensors and processing the data from the sensors.

 Sensors are the union of sensor hardware, electronic signal conditioning, conversion in computer treatable format, software processing and settings for the software parameters

Perception is never 100% perfect.

plant
car
boat
water
river
house
building

Failures

- HW limits
- Processing errors

Most used sensors

VLISNALINO BICOCCA

- RADARs
- LIDARs
- Cameras

Most used sensors

RADARsLIDARsCameras

Physics of cameras and LIDARS

- Electromagnetic waves
 - Visible
 - NIR
 - Visible + NIR
 - FIR
 - Multi-spectral
 - etc.

Electromagnetic waves

- Cameras all bands
- LIDAR quite often NIR

- Active lightening
- Passive lightening
 - Absorption
 - Re-emission
 - Reflection
 - Refraction

 Camera systems: quite often passive < DEGLI STUDI

NIVERSI

DI MILANO

Camera defects

Sensor

- Smearing
- Not enough dynamic range
- Defective pixels
- Etc.
- Lenses
 - Chromatic aberrations
 - Geometric distorsions
 - Vignetting
 - Etc.

Smearing (blooming)

A DEGLI STUDI DI MILANO B I C O C C A

Sensor

- Smearing
- Not enough dynamic range
- Defective pixels
- Etc.

- Chromatic aberrations
- Geometric distorsions
- Vignetting
- Etc.

Dynamic range

Sensor

- Smearing
- Not enough dynamic range
- Defective pixels
- Etc.

Defective pixels

Sensor

Smearing

- Not enough dynamic range
- Defective pixels
- Etc.

- Chromatic aberrations
- Geometric distorsions
- Vignetting
- Etc.

Chromatic aberrations

Sensor

Smearing

- Not enough dynamic range
- Defective pixels
- Etc.

- Chromatic aberrations
- Geometric distorsions
- Vignetting
- Etc.

Geometric distorsions

Sensor

Smearing

- Not enough dynamic range
- Defective pixels
- Etc.

- Chromatic aberrations
- Geometric distorsions
- Vignetting
- Etc.

Vignetting

Sensor

- Smearing
- Not enough dynamic range
- Defective pixels
- Etc.

- Chromatic aberrations
- Geometric distorsions
- Vignetting
- Etc.

Software and its parameters for cameras and LIDARS

Thresholds Algorithms

- For edges / lines
- For segmentation
- Classification
- etc.

Software and its parameters for cameras and LIDARS

Thresholds Algorithms

- For edges / lines
- For segmentation
- Classification
- etc.

Software and its parameters for cameras and LIDARS

Thresholds

Algorithms

- For edges / lines
- For segmentation
- Classification
- etc.

🔁 DEGLI STUDI

Physics of LIDARS

Physics of LIDARS

Beam steering

- Solid state (phased array)
- MEMS mirrors

LIDARS

Correct model of the probability of each error

✓ DEGLI STUD

DI MILANO

JNIVERSIT

Correct model of the probability of each error

RANGE MEASUREMENTS

C DEGLI STU

UVERSIT

Correct model of the probability of each error RANGE MEASUREMENTS: BEAM MODEL

How to deal with all these complications? Correct model of the probability of each error CAMERAS

ATTIC DE MILANO

DI MILANO C C A

THANKS FOR YOUR ATTENTION